Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
Eur Spine J ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581434

RESUMEN

PURPOSE: Lumbar spinal stenosis (LSS) is common in our aging population resulting in pain and functional impairment. Recent advances in pain research have identified several single nucleotide polymorphisms (SNP) associated with inter-individual symptom and treatment response. The goal of the current study was to investigate the association of SNPs in Neuropeptide Y (NPY) and Catechol-O-methyltransferase (COMT) with pain, function, and treatment outcomes in Lumbar spinal stenosis (LSS) patients receiving non-surgical treatments. METHODS: An exploratory observational biomarker study was performed ancillary to a previously published clinical trial evaluating three different non-surgical treatments for LSS. Saliva samples were obtained for single nucleotide polymorphism genotyping and blood samples were collected for NPY protein. Data on pain and function collected as part of the clinical trial at baseline, 2 and 6 months were examined for association with known polymorphisms in NPY and COMT. RESULTS: Subjects with the NPY rs16147 TT genotype exhibited higher baseline symptom severity but also a higher likelihood of responding to non-surgical treatments. Subjects with the COMT rs4680 GG genotype also exhibited higher baseline symptom severity but did not demonstrate greater response to treatment. CONCLUSIONS: NPY rs16147 and COMT rs4680 are important potential biomarkers associated with pain and function. NPY genotype may be useful in predicting response to non-surgical treatments in older adults with LSS.

2.
JOR Spine ; 7(1): e1303, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38222800

RESUMEN

Background: Low back pain is a global health problem that originated mainly from intervertebral disc degeneration (IDD). Autophagy, negatively regulated by the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) signaling pathway, prevents metabolic and degenerative diseases by removing and recycling damaged cellular components. Despite growing evidence that autophagy occurs in the intervertebral disc, the regulation of disc cellular autophagy is still poorly understood. Methods: Annulus fibrosus (rAF) cell cultures derived from healthy female rabbit discs were used to test the effect of autophagy inhibition or activation on disc cell fate and matrix homeostasis. Specifically, different chemical inhibitors including rapamycin, 3-methyladenine, MK-2206, and PP242 were used to modulate activities of different proteins in the PI3K/Akt/mTOR signaling pathway to assess IL-1ß-induced cellular senescence, apoptosis, and matrix homeostasis in rAF cells grown under nutrient-poor culture condition. Results: Rapamycin, an inhibitor of mTOR complex 1 (mTORC1), reduced the phosphorylation of mTOR and its effector p70/S6K in rAF cell cultures. Rapamycin also induced autophagic flux as measured by increased expression of key autophagy markers, including LC3 puncta number, LC3-II expression, and cytoplasmic HMGB1 intensity and decreased p62/SQSTM1 expression. As expected, IL-1ß stimulation promoted rAF cellular senescence, apoptosis, and matrix homeostatic imbalance with enhanced aggrecanolysis and MMP-3 and MMP-13 expression. Rapamycin treatment effectively mitigated IL-1ß-mediated inflammatory stress changes, but these alleviating effects of rapamycin were abrogated by chemical inhibition of Akt and mTOR complex 2 (mTORC2). Conclusions: These findings suggest that rapamycin blunts adverse effects of inflammation on disc cells by inhibiting mTORC1 to induce autophagy through the PI3K/Akt/mTOR pathway that is dependent on Akt and mTORC2 activities. Hence, our findings identify autophagy, rapamycin, and PI3K/Akt/mTOR signaling as potential therapeutic targets for IDD treatment.

3.
JOR Spine ; 7(1): e1286, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38234974

RESUMEN

Background: Intervertebral disc degeneration (IDD) is a leading contributor to low back pain (LBP). Autophagy, strongly activated by hypoxia and nutrient starvation, is a vital intracellular quality control process that removes damaged proteins and organelles to recycle them for cellular biosynthesis and energy production. While well-established as a major driver of many age-related diseases, autophagy dysregulation or deficiency has yet been confirmed to cause IDD. Methods: In vitro, rat nucleus pulposus (NP) cells treated with bafilomycin A1 to inhibit autophagy were assessed for glycosaminoglycan (GAG) content, proteoglycan synthesis, and cell viability. In vivo, a transgenic strain (Col2a1-Cre; Atg7 fl/fl) mice were successfully generated to inhibit autophagy primarily in NP tissues. Col2a1-Cre; Atg7 fl/fl mouse intervertebral discs (IVDs) were evaluated for biomarkers for apoptosis and cellular senescence, aggrecan content, and histological changes up to 12 months of age. Results: Here, we demonstrated inhibition of autophagy by bafilomycin produced IDD features in the rat NP cells, including increased apoptosis and cellular senescence (p21 CIP1) and decreased expression of disc matrix genes Col2a1 and Acan. H&E histologic staining showed significant but modest degenerative changes in NP tissue of Col2a1-Cre; Atg7 fl/fl mice compared to controls at 6 and 12 months of age. Intriguingly, 12-month-old Col2a1-Cre; Atg7 fl/fl mice did not display increased loss of NP proteoglycan. Moreover, markers of apoptosis (cleaved caspase-3, TUNEL), and cellular senescence (p53, p16 INK4a , IL-1ß, TNF-α) were not affected in 12-month-old Col2a1-Cre; Atg7 fl/fl mice compared to controls. However, p21 CIP1and Mmp13 gene expression were upregulated in NP tissue of 12-month-old Col2a1-Cre; Atg7 fl/fl mice compared to controls, suggesting p21 CIP1-mediated cellular senescence resulted from NP-targeted Atg7 knockout might contribute to the observed histological changes. Conclusion: The absence of overt IDD features from disrupting Atg7-mediated macroautophagy in NP tissue implicates other compensatory mechanisms, highlighting additional research needed to elucidate the complex biology of autophagy in regulating age-dependent IDD.

4.
Eur Spine J ; 33(3): 892-899, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37046075

RESUMEN

PURPOSE: Lumbar spinal stenosis (LSS) is the most common reason for spinal surgery in patients over the age of 65, and there are few effective non-surgical treatments. Therefore, the development of novel treatment or preventative modalities to decrease overall cost and morbidity associated with LSS is an urgent matter. The cause of LSS is multifactorial; however, a significant contributor is ligamentum flavum hypertrophy (LFH) which causes mechanical compression of the cauda equina or nerve roots. We assessed the role of a novel target, microRNA-29a (miR-29a), in LFH and investigated the potential for using miR-29a as a therapeutic means to combat LSS. METHODS: Ligamentum flavum (LF) tissue was collected from patients undergoing decompressive surgery for LSS and assessed for levels of miR-29a and pro-fibrotic protein expression. LF cell cultures were then transfected with either miR-29a over-expressor (agonist) or inhibitor (antagonist). The effects of over-expression and under-expression of miR-29a on expression of pro-fibrotic proteins was assessed. RESULTS: We demonstrated that LF at stenotic levels had a loss of miR-29a expression. This was associated with greater LF tissue thickness and higher mRNA levels of collagen I and III. We also demonstrated that miR29-a plays a direct role in the regulation of collagen gene expression in ligamentum flavum. Specifically, agents that increase miR-29a may attenuate LFH, while those that decrease miR-29a promote fibrosis and LFH. CONCLUSION: This study demonstrates that miR-29a may potentially be used to treat LFH and provides groundwork to initiate the development of a therapeutic product for LSS.


Asunto(s)
Cauda Equina , MicroARNs , Estenosis Espinal , Humanos , Colágeno Tipo I , Hipertrofia , MicroARNs/genética , Procedimientos Neuroquirúrgicos , Estenosis Espinal/terapia
6.
Am J Phys Med Rehabil ; 102(2): 159-165, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36634238

RESUMEN

ABSTRACT: Environmental scans determine trends in an organization's or field's internal and external environment. The results can help shape goals, inform strategic decision making, and direct future actions. The Association of Academic Physiatrists convened a strategic planning group in 2020, composed of physiatrists representing a diversity of professional roles, career stages, race and ethnicity, gender, disability status, and geographic areas of practice. This strategic planning group performed an environmental scan to assess the forces, trends, challenges, and opportunities affecting both the Association of Academic Physiatrists and the entire field of academic physiatry (also known as physical medicine and rehabilitation, physical and rehabilitation medicine, and rehabilitation medicine). This article presents aspects of the environmental scan thought to be most pertinent to the field of academic physiatry organized within the following five themes: (1) Macro/Societal Trends, (2) Technological Advancements, (3) Diversity and Global Outreach, (4) Economy, and (5) Education/Learning Environment. The challenges and opportunities presented here can provide a roadmap for the field to thrive within the complex and evolving healthcare systems in the United States and globally.


Asunto(s)
Internado y Residencia , Medicina , Medicina Física y Rehabilitación , Humanos , Estados Unidos , Educación de Postgrado en Medicina , Atención a la Salud
7.
Pain Med ; 24(Suppl 1): S36-S47, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36715642

RESUMEN

As a member of the Back Pain Consortium (BACPAC), the University of Pittsburgh Mechanistic Research Center's research goal is to phenotype chronic low back pain using biological, biomechanical, and behavioral domains using a prospective, observational cohort study. Data will be collected from 1,000 participants with chronic low back pain according to BACPAC-wide harmonized and study-specific protocols. Participation lasts 12 months with one required in person baseline visit, an optional second in person visit for advanced biomechanical assessment, and electronic follow ups at months 1, 2, 3, 4, 5, 6, 9, and 12 to assess low back pain status and response to prescribed treatments. Behavioral data analysis includes a battery of patient-reported outcomes, social determinants of health, quantitative sensory testing, and physical activity. Biological data analysis includes omics generated from blood, saliva, and spine tissue. Biomechanical data analysis includes a physical examination, lumbopelvic kinematics, and intervertebral kinematics. The statistical analysis includes traditional unsupervised machine learning approaches to categorize participants into groups and determine the variables that differentiate patients. Additional analysis includes the creation of a series of decision rules based on baseline measures and treatment pathways as inputs to predict clinical outcomes. The characteristics identified will contribute to future studies to assist clinicians in designing a personalized, optimal treatment approach for each patient.


Asunto(s)
Dolor de la Región Lumbar , Humanos , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/terapia , Estudios de Cohortes , Estudios Prospectivos , Dolor de Espalda , Fenotipo , Estudios Observacionales como Asunto
8.
Pain Med ; 24(Suppl 1): S3-S12, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36622041

RESUMEN

In 2019, the National Health Interview survey found that nearly 59% of adults reported pain some, most, or every day in the past 3 months, with 39% reporting back pain, making back pain the most prevalent source of pain, and a significant issue among adults. Often, identifying a direct, treatable cause for back pain is challenging, especially as it is often attributed to complex, multifaceted issues involving biological, psychological, and social components. Due to the difficulty in treating the true cause of chronic low back pain (cLBP), an over-reliance on opioid pain medications among cLBP patients has developed, which is associated with increased prevalence of opioid use disorder and increased risk of death. To combat the rise of opioid-related deaths, the National Institutes of Health (NIH) initiated the Helping to End Addiction Long-TermSM (HEAL) initiative, whose goal is to address the causes and treatment of opioid use disorder while also seeking to better understand, diagnose, and treat chronic pain. The NIH Back Pain Consortium (BACPAC) Research Program, a network of 14 funded entities, was launched as a part of the HEAL initiative to help address limitations surrounding the diagnosis and treatment of cLBP. This paper provides an overview of the BACPAC research program's goals and overall structure, and describes the harmonization efforts across the consortium, define its research agenda, and develop a collaborative project which utilizes the strengths of the network. The purpose of this paper is to serve as a blueprint for other consortia tasked with the advancement of pain related science.


Asunto(s)
Dolor Crónico , Dolor de la Región Lumbar , Trastornos Relacionados con Opioides , Adulto , Humanos , Proyectos de Investigación , Analgésicos Opioides/uso terapéutico , Comités Consultivos , Dimensión del Dolor/métodos , Dolor Crónico/epidemiología , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/terapia , Trastornos Relacionados con Opioides/epidemiología , Trastornos Relacionados con Opioides/terapia
9.
Pain Med ; 24(Suppl 1): S71-S80, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-36525387

RESUMEN

The Biospecimen Collection and Processing Working Group of the National Institutes of Health (NIH) HEAL Initiative BACPAC Research Program was charged with identifying molecular biomarkers of interest to chronic low back pain (cLBP). Having identified biomarkers of interest, the Working Group worked with the New York University Grossman School of Medicine, Center for Biospecimen Research and Development-funded by the Early Phase Pain Investigation Clinical Network Data Coordinating Center-to harmonize consortium-wide and site-specific efforts for biospecimen collection and analysis. Biospecimen collected are saliva, blood (whole, plasma, serum), urine, stool, and spine tissue (paraspinal muscle, ligamentum flavum, vertebral bone, facet cartilage, disc endplate, annulus fibrosus, or nucleus pulposus). The omics data acquisition and analyses derived from the biospecimen include genomics and epigenetics from DNA, proteomics from protein, transcriptomics from RNA, and microbiomics from 16S rRNA. These analyses contribute to the overarching goal of BACPAC to phenotype cLBP and will guide future efforts for precision medicine treatment.


Asunto(s)
Dolor de la Región Lumbar , Humanos , ARN Ribosómico 16S , Biomarcadores , Dolor de la Región Lumbar/terapia , Fenotipo , New York
10.
Am J Phys Med Rehabil ; 102(1): 34-42, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35302527

RESUMEN

OBJECTIVE: To describe the demographic characteristics of patients who used telemedicine and office visits in physical medicine and rehabilitation during the COVID-19 pandemic and to quantify differences in clinical utilization between groups. Clinical utilization was defined as emergency department, urgent care, and hospital visits. DESIGN: This was a retrospective cohort study of 1096 patients who used telemedicine and 1171 patients who used office visits from April to June 2020 in the outpatient physical medicine and rehabilitation clinics at University of Pittsburgh Medical Center for musculoskeletal-related complaints. RESULTS: The telemedicine groups contained proportionally more people of color and higher comorbidities than the office visit groups. Patients who were seen in the telemedicine groups were more likely to be prescribed opioids than the office visit group. There were no differences in clinical utilizations between the telemedicine and office visit groups. CONCLUSIONS: The higher use of telemedicine in patients of color suggests a need for studying long-term outcomes to evaluate differences in care standards. There is an urgent need to understand how telemedicine affects opioid prescribing practices. Lastly, future studies are needed to understand why there were no differences in clinical utilization between the telemedicine and office visit groups.


Asunto(s)
COVID-19 , Medicina Física y Rehabilitación , Telemedicina , Humanos , Pandemias , Estudios Retrospectivos , Pacientes Ambulatorios , Analgésicos Opioides , Pautas de la Práctica en Medicina , Visita a Consultorio Médico
11.
Eur Spine J ; 2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36565345

RESUMEN

PURPOSE: Chronic low back pain (cLBP) is a common health condition worldwide and a leading cause of disability with an estimated lifetime prevalence of 80-90% in industrialized countries. However, we have had limited success in treating cLBP likely due to its non-specific heterogeneous nature that goes beyond detectable anatomical changes. We propose that omics technologies as precision medicine tools are well suited to provide insight into its pathophysiology and provide diagnostic markers and therapeutic targets. Therefore, in this review, we explore the current state of omics technologies in the diagnosis and classification of cLBP. We identify factors that may serve as markers to differentiate between acute and chronic cases of low back pain (LBP). Finally, we also discuss some challenges that must be overcome to successfully apply precision medicine to the diagnosis and treatment of cLBP. METHODS: A literature search for the current applications of omics technologies to chronic low back pain was performed using the following search terms- "back pain," "low back pain," "proteomics," "transcriptomics", "epigenomics," "genomics," "omics." We reviewed molecular markers identified from 35 studies which hold promise in providing information regarding molecular insights into cLBP. RESULTS: GWAS studies have found evidence for the role of single nucleotide polymorphisms (SNPs) associated with pain pathways in individuals with cLBP. Epigenomic modifications in patients with cLBP have been found to be enriched among genes involved in immune signaling and inflammation. Transcriptomics profiles of patients with cLBP show multiple lines of evidence for the role of inflammation in cLBP. The glycomics profiles of patients with cLBP are similar to those of patients with inflammatory conditions. Proteomics and microbiomics show promise but have limited studies currently. CONCLUSION: Omics technologies have identified associations between inflammatory and pain pathways in the pathophysiology of cLBP. However, in order to integrate information across the range of studies, it is important for the field to identify and adopt standardized definitions of cLBP and control patients. Additionally, most papers have applied a single omics method to a sampling of cLBP patients which have yielded limited insight into the pathophysiology of cLBP. Therefore, we recommend a multi-omics approach applied to large global consortia for advancing subphenotyping and better management of cLBP, via improved identification of diagnostic markers and therapeutic targets.

12.
BMC Musculoskelet Disord ; 23(1): 1059, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36471334

RESUMEN

BACKGROUND: Low back pain (LBP) is a common musculoskeletal condition and a major cause of disability worldwide. Previous studies have found associations of biomarkers with pain and pain-related disability in LBP patients. This study aimed to explore the association between serum biomarkers and pain and disability in patients with acute or subacute axial LBP. METHODS: This study was ancillary to a parent randomized controlled trial. Enrolled participants were randomized into three intervention groups: one of two types of spinal manipulation or medical care. In the parent study, 107 adults who experienced a new episode of LBP within 3 months prior to enrollment were recruited. For this study, 90 of these 107 participants consented to have blood samples obtained, which were drawn immediately before the beginning of treatment. Seven biomarkers were chosen based on previous literature and analyzed. Clinical outcomes were pain and Oswestry Disability Index (ODI) evaluated at baseline and 4 weeks. Spearman's |r| was used to study the association of initial levels of each biomarker with pain and ODI scores at baseline and with changes in outcome scores from baseline to 4 weeks (end of treatment) within each intervention group. RESULTS: At baseline, 4 of 7 biomarkers had an association with pain that was |r| ≥ .20: neuropeptide Y (NPY) (r = 0.23, p = .028), E-Selectin (r = 0.22, p = .043), vitamin D ((r = - 0.32, p = .002), and c-reactive protein (CRP) (r = 0.37, p = .001). No baseline biomarker had an association with disability that was |r| ≥ 0.20. For the correlations of baseline biomarkers with 4-week change in outcomes, vitamin D showed a correlation with change in disability and/or pain (|r| ≥ 0.20, p > .05) in manipulation-related groups, while CRP, NPY, and E-selectin along with TNFα, Substance P and RANTES showed at least one correlation with change in pain or disability (|r| ≥ 0.20, p > .05) in at least one of the treatment groups. CONCLUSIONS: In 90 LBP patients, the analyzed biomarkers, especially vitamin D, represent a small set of potential candidates for further research aimed at individualizing patient care. Overall, the associations investigated in the current study are an initial step in identifying the direct mechanisms of LBP and predicting outcomes of manipulation-related treatments or medical care. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01211613, Date of Registration: September 29, 2010, https://clinicaltrials.gov/ct2/show/NCT01211613?term=schneider&cond=Low+Back+Pain&cntry=US&state=US%3APA&draw=2&rank=1.


Asunto(s)
Dolor de la Región Lumbar , Vitamina D , Adulto , Humanos , Biomarcadores/sangre , Selectina E/sangre , Dolor de la Región Lumbar/sangre , Dolor de la Región Lumbar/diagnóstico , Dolor de la Región Lumbar/terapia , Dimensión del Dolor , Resultado del Tratamiento , Vitamina D/sangre
13.
Eur Spine J ; 31(12): 3603-3615, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36308543

RESUMEN

PURPOSE: Multiple diverse factors contribute to musculoskeletal pain, a major cause of physical dysfunction and health-related costs worldwide. Rapidly growing evidence demonstrates that the gut microbiome has overarching influences on human health and the body's homeostasis and resilience to internal and external perturbations. This broad role of the gut microbiome is potentially relevant and connected to musculoskeletal pain, though the literature on the topic is limited. Thus, the literature on the topic of musculoskeletal pain and gut microbiome was explored. METHODS: This narrative review explores the vast array of reported metabolites associated with inflammation and immune-metabolic response, which are known contributors to musculoskeletal pain. Moreover, it covers known modifiable (e.g., diet, lifestyle choices, exposure to prescription drugs, pollutants, and chemicals) and non-modifiable factors (e.g., gut architecture, genetics, age, birth history, and early feeding patterns) that are known to contribute to changes to the gut microbiome. Particular attention is devoted to modifiable factors, as the ultimate goal of researching this topic is to implement gut microbiome health interventions into clinical practice. RESULTS: Overall, numerous associations exist in the literature that could converge on the gut microbiome's pivotal role in musculoskeletal health. Particularly, a variety of metabolites that are either directly produced or indirectly modulated by the gut microbiome have been highlighted. CONCLUSION: The review highlights noticeable connections between the gut and musculoskeletal health, thus warranting future research to focus on the gut microbiome's role in musculoskeletal conditions.


Asunto(s)
Microbioma Gastrointestinal , Dolor Musculoesquelético , Humanos , Microbioma Gastrointestinal/fisiología , Inflamación
14.
JOR Spine ; 5(2): e1197, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35783910

RESUMEN

Introduction: Intervertebral disc degeneration (IDD) is closely related to heightened inflammation in the annulus fibrosis (AF) and nucleus pulposus (NP) cells in the intervertebral disc. An imbalanced matrix homeostasis has been shown to contribute to disc degeneration and associated discogenic low back pain. Metformin, a diabetes medication, has been noted to exhibit anti-inflammatory properties through upregulation of the AMPK pathway, leading to various anti-inflammatory-related responses in hepatocytes. However, it is still unclear how metformin influences disc cellular response to inflammatory stress and the corresponding mechanism. Hence, the objective of this study is to elucidate the effects of metformin on expression of key pro-inflammatory, catabolic, and anabolic factors within rat AF cells in response to inflammatory stimulation and mechanical tensile stress. Methods: Five Fischer 344 rats were sacrificed and their spines isolated. AF cells were cultured and plated in flexible silicone membrane-based six-well plates. Wells were split into eight groups and subjected to metformin, IL-1ß, mechanical stretch, and combined treatments. Relative gene expressions of MMP-13, COX-2, iNOS, AGC, and Col1 were assessed with quantitative real-time polymerase chain reaction (qRT-PCR), and downstream prostaglandin E2 (PGE2) production was quantified with enzyme-linked immunosorbent assay (ELISA). NF-kB nuclear translocation was also quantified. Results: Metformin in the presence of the combined stress treatments (M + IL/S) significantly increased Col1, COX-2, and MMP-13 gene expression, decreased PGE2 production compared to IL/S conditions alone. Metformin treatment of cultured rat annulus fibrosus cells significantly reduced the nuclear translocation of NF-κB after 4 h of IL-1ß treatment from 43.1% in case of IL-1ß treatment down to 26.2% in the case of metformin + IL-1ß treatment. Discussion: The lack of metformin-mediated suppression of inflammatory response in the nonstretch groups indicates that metformin may be enacting its effects through a stretch-dependent manner. These results suggest a foundation for pursuing further research into metformin's potential role as an anti-inflammatory agent for curtailing intervertebral disc degeneration.

15.
JOR Spine ; 5(2): e1202, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35783914

RESUMEN

Background: Previous animal models of intervertebral disc degeneration (IDD) rely on open surgical approaches, which confound the degenerative response and pain behaviors due to injury to surrounding tissues during the surgical approach. To overcome these challenges, we developed a minimally invasive percutaneous puncture procedure to induce IDD in a rat model. Methods: Ten Fischer 344 male rats underwent percutaneous annular puncture of lumbar intervertebral discs (IVDs) at L2-3, L3-4, and L4-5. Ten unpunctured rats were used as controls. Magnetic resonance imagings (MRIs), serum biomarkers, and behavioral tests were performed at baseline and 6, 12, and 18 weeks post puncture. Rats were sacrificed at 18 weeks and disc histology, immunohistochemistry, and glycosaminoglycan (GAG) assays were performed. Results: Punctured IVDs exhibited significant reductions in MRI signal intensity and disc volume. Disc histology, immunohistochemistry, and GAG assay results were consistent with features of IDD. IVD-punctured rats demonstrated significant changes in pain-related behaviors, including total distance moved, twitching frequency, and rearing duration. Conclusions: This is the first reported study of the successful establishment of a reproducible rodent model of a percutaneous lumbar annular puncture resulting in discogenic pain. This model will be useful to test therapeutics and elucidate the basic mechanisms of IDD and discogenic pain.

16.
Eur Spine J ; 31(5): 1088-1098, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524071

RESUMEN

BACKGROUND: The intervertebral disc degenerates with age and has a poor propensity for regeneration. Small molecule transport plays a key role in long-term degradation and repair. Convection (bulk flow), induced by low rate cyclic loading of the intervertebral disc, has been shown to increase transport of small molecules. However, the potential therapeutic benefit of low rate cyclic loading on degenerated discs has not been described. The purpose of this study was to determine if a sustained (daily) low rate cyclic loading regimen could slow, arrest, or reverse intervertebral disc degeneration in the rabbit lumbar spine. METHODS: Fifty-six New Zealand white rabbits (>12 months old) were designated as either Control (no disc puncture), 8D (disc puncture followed by 8 weeks of degeneration), 16D (disc puncture followed by 16 weeks of degeneration), or Therapy (disc puncture followed by 8 weeks of degeneration and then 8 weeks of daily low rate cyclic loading). Specimens were evaluated by T2 mapping, Pfirrmann scale grading, nucleus volume, disc height index, disc morphology and structure, and proteoglycan content. RESULTS: In every metric, mean values for the Therapy group fell between Controls and 8D animals. These results suggest that sustained low rate cyclic loading had a therapeutic effect on the already degenerated disc and the regimen promoted signs of regeneration. If these results translate clinically, this approach could fulfil a significant clinical need by providing a means of non-invasively treating intervertebral disc degeneration.


Asunto(s)
Distinciones y Premios , Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Bioingeniería , Modelos Animales de Enfermedad , Humanos , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/terapia , Conejos , Regeneración
17.
Int J Mol Sci ; 23(7)2022 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-35409374

RESUMEN

Previous research has identified an association between external radiation and disc degeneration, but the mechanism was poorly understood. This study explores the effects of ionizing radiation (IR) on inducing cellular senescence of annulus fibrosus (AF) in cell culture and in an in vivo mouse model. Exposure of AF cell culture to 10-15 Gy IR for 5 min followed by 5 days of culture incubation resulted in almost complete senescence induction as evidenced by SA-ßgal positive staining of cells and elevated mRNA expression of the p16 and p21 senescent markers. IR-induced senescent AF cells exhibited increased matrix catabolism, including elevated matrix metalloproteinase (MMP)-1 and -3 protein expression and aggrecanolysis. Analogous results were seen with whole body IR-exposed mice, demonstrating that genotoxic stress also drives disc cellular senescence and matrix catabolism in vivo. These results have important clinical implications in the potential adverse effects of ionizing radiation on spinal health.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Anillo Fibroso/metabolismo , Senescencia Celular , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/genética , Degeneración del Disco Intervertebral/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Ratones , Radiación Ionizante
18.
Stem Cells Dev ; 31(19-20): 621-629, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35442089

RESUMEN

Adipose therapeutics, including isolated cell fractions and tissue emulsifications, have been explored for osteoarthritis (OA) treatment; however, the optimal preparation method and bioactive tissue component for healing has yet to be determined. This in vitro study compared the effects of adipose preparations on cultured knee chondrocytes. De-identified human articular chondrocytes were co-cultured with adipose preparations for 36 or 72 h. Human adipose tissues were obtained from abdominal panniculectomy procedures and processed using three different techniques: enzymatic digestion to release stromal vascular fraction (SVF), emulsification with luer-to-luer transfer (nanofat), and processing in a bead-mill (Lipogems, Lipogems International SpA, Milan, Italy). Gene expression in both chondrocytes and adipose preparations was measured to assess cellular inflammation, catabolism, and anabolism. Results demonstrated that chondrocytes cultured with SVF consistently showed increased inflammatory and catabolic gene expression compared with control chondrocytes at both 36- and 72-h timepoints. Alternatively, chondrocytes co-cultured with either nanofat or bead-mill processed adipose derivatives yielded minimal pro-inflammatory effects and instead increased anabolism and regeneration of cartilage extracellular matrix. Interestingly, nanofat preparations induced transient matrix anabolism while Lipogems adipose consistently demonstrated increased matrix synthesis at both study timepoints after co-culture. This evaluation of the regenerative potential of adipose-derived preparations as a clinical tool for knee OA treatment suggests that mechanically processed preparations may be more efficacious than an isolated SVF cell preparation.


Asunto(s)
Tejido Adiposo , Condrocitos , Humanos , Condrocitos/metabolismo , Técnicas de Cocultivo , Cartílago , Fenotipo
19.
J Cell Physiol ; 237(2): 1266-1284, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34787318

RESUMEN

Intervertebral disc degeneration (IDD) is a leading contributor to low back pain. The intervertebral disc (IVD) is composed of three tissue types: the central gelatinous nucleus pulposus (NP) tissue, the surrounding annulus fibrosus (AF) tissue, and the inferior and superior cartilage endplates. The IVD microenvironment is hypoxic, acidic, hyperosmotic, and low in nutrients because it is mostly avascular. The cellular processes that underlie IDD initiation and progression are still poorly understood. Specifically, a lack of understanding regarding NP cell metabolism and physiology hinders the development of effective therapeutics to treat IDD patients. Autophagy is a vital intracellular degradation process that removes damaged organelles, misfolded proteins, and intracellular pathogens and recycles the degraded components for cellular energy and function. NP cells have adapted to survive within their harsh tissue microenvironment using processes that are largely unknown, and we postulate autophagy is one of these undiscovered mechanisms. In this review, we describe unique features of the IVD tissue, review how physiological stressors impact autophagy in NP cells in vitro, survey the current understanding of autophagy regulation in the IVD, and assess the relationship between autophagy and IDD. Published studies confirm autophagy markers are present in IVD tissue, and IVD cells can regulate autophagy in response to cellular stressors in vitro. However, data are still lacking to determine the exact mechanisms regulating autophagy in IVD cells. More in-depth research is needed to establish whether autophagy is necessary to maintain IVD cell health and validate autophagy as a relevant therapeutic target for treating IDD.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Disco Intervertebral , Núcleo Pulposo , Anillo Fibroso/metabolismo , Autofagia , Humanos , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Núcleo Pulposo/metabolismo
20.
Pancreas ; 50(7): 906-915, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34643606

RESUMEN

ABSTRACT: A workshop was sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases to focus on research gaps and opportunities in pancreatic pain. The event was held on July 21, 2021, and structured into 4 sessions: (1) pathophysiology; (2) biomarkers, mediators, and pharmacology of pain; (3) pain assessment; and (4) pain treatment challenges and opportunities. The current state of knowledge was reviewed; many knowledge gaps and research needs were identified that require further investigation. Common themes included the need to better understand the underlying mechanisms of pain in pancreatic diseases, the relationship of visceral neural pathways and central pain centers, the role of behavioral factors and disorders on the perception of pain, and differences in pain perception and processes in children when compared with adults. In addition, the role of genetic risk factors for pain and the mechanisms and role of placebos in pain treatment were discussed. Methods of pain assessment including quantitative sensory testing were examined, as well as the process of central sensitization of pain. Finally, newer approaches to pain management including cognitive behavioral therapy, nerve stimulation, experimental (nonopioid) drugs, and cannabinoid compounds were covered.


Asunto(s)
Dolor Abdominal/terapia , Investigación Biomédica/métodos , Manejo del Dolor/métodos , Enfermedades Pancreáticas/terapia , Dolor Abdominal/etiología , Dolor Abdominal/fisiopatología , Adulto , Investigación Biomédica/tendencias , Niño , Humanos , National Institute of Diabetes and Digestive and Kidney Diseases (U.S.) , Manejo del Dolor/tendencias , Enfermedades Pancreáticas/complicaciones , Enfermedades Pancreáticas/fisiopatología , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...